पिछले कुछ खंडों में, हम कई सरल कार्यक्रमों का निर्माण करके एन्क्रिप्टेड संगणना के बारे में सीख रहे हैं। इस भाग में, हम Federated Learning Demo of Part 4 पर लौटने वाले हैं, जहां हमारे पास "विश्वसनीय एग्रीगेटर" था, जो कई श्रमिकों से मॉडल अपडेट के औसत के लिए जिम्मेदार था।
अब हम इस विश्वसनीय एग्रीगेटर को हटाने के लिए एन्क्रिप्टेड कम्प्यूटेशन के लिए अपने नए उपकरणों का उपयोग करेंगे क्योंकि यह आदर्श से कम है क्योंकि यह मानता है कि हम किसी को इस विश्वसनीय जानकारी तक पहुंच के लिए पर्याप्त भरोसेमंद पा सकते हैं। ऐसी स्थिति हर बार नहीं होती है।
इस प्रकार, इस नोटबुक में, हम दिखाएंगे कि कैसे SMPC का उपयोग सुरक्षित एकत्रीकरण करने के लिए किया जा सकता है जैसे कि हमें "विश्वसनीय एग्रीगेटर" की आवश्यकता नहीं है।
लेखक:
nbTranslate का उपयोग करके अनुवादित
संपादक:
In [ ]:
import pickle
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import TensorDataset, DataLoader
class Parser:
"""Parameters for training"""
def __init__(self):
self.epochs = 10
self.lr = 0.001
self.test_batch_size = 8
self.batch_size = 8
self.log_interval = 10
self.seed = 1
args = Parser()
torch.manual_seed(args.seed)
kwargs = {}
In [ ]:
with open('../data/BostonHousing/boston_housing.pickle','rb') as f:
((X, y), (X_test, y_test)) = pickle.load(f)
X = torch.from_numpy(X).float()
y = torch.from_numpy(y).float()
X_test = torch.from_numpy(X_test).float()
y_test = torch.from_numpy(y_test).float()
# preprocessing
mean = X.mean(0, keepdim=True)
dev = X.std(0, keepdim=True)
mean[:, 3] = 0. # the feature at column 3 is binary,
dev[:, 3] = 1. # so we don't standardize it
X = (X - mean) / dev
X_test = (X_test - mean) / dev
train = TensorDataset(X, y)
test = TensorDataset(X_test, y_test)
train_loader = DataLoader(train, batch_size=args.batch_size, shuffle=True, **kwargs)
test_loader = DataLoader(test, batch_size=args.test_batch_size, shuffle=True, **kwargs)
In [ ]:
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(13, 32)
self.fc2 = nn.Linear(32, 24)
self.fc3 = nn.Linear(24, 1)
def forward(self, x):
x = x.view(-1, 13)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
model = Net()
optimizer = optim.SGD(model.parameters(), lr=args.lr)
In [ ]:
import syft as sy
hook = sy.TorchHook(torch)
bob = sy.VirtualWorker(hook, id="bob")
alice = sy.VirtualWorker(hook, id="alice")
james = sy.VirtualWorker(hook, id="james")
compute_nodes = [bob, alice]
श्रमिकों को डेटा भेजें
आमतौर पर उनके पास पहले से ही होता है, यह केवल डेमो उद्देश्यों के लिए है जो हम इसे मैन्युअल रूप से भेजते हैं
In [ ]:
train_distributed_dataset = []
for batch_idx, (data,target) in enumerate(train_loader):
data = data.send(compute_nodes[batch_idx % len(compute_nodes)])
target = target.send(compute_nodes[batch_idx % len(compute_nodes)])
train_distributed_dataset.append((data, target))
In [ ]:
def train(epoch):
model.train()
for batch_idx, (data,target) in enumerate(train_distributed_dataset):
worker = data.location
model.send(worker)
optimizer.zero_grad()
# update the model
pred = model(data)
loss = F.mse_loss(pred.view(-1), target)
loss.backward()
optimizer.step()
model.get()
if batch_idx % args.log_interval == 0:
loss = loss.get()
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * data.shape[0], len(train_loader),
100. * batch_idx / len(train_loader), loss.item()))
In [ ]:
def test():
model.eval()
test_loss = 0
for data, target in test_loader:
output = model(data)
test_loss += F.mse_loss(output.view(-1), target, reduction='sum').item() # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}\n'.format(test_loss))
In [ ]:
import time
In [ ]:
t = time.time()
for epoch in range(1, args.epochs + 1):
train(epoch)
total_time = time.time() - t
print('Total', round(total_time, 2), 's')
In [ ]:
test()
अब हम इस उदाहरण को एन्क्रिप्शन का उपयोग करते हुए समुच्चय को थोड़ा संशोधित करने जा रहे हैं। train()
फ़ंक्शन में कोड का मुख्य टुकड़ा जो वास्तव में अलग है वह 1 या 2 लाइनों का है, जिसे हम इंगित करेंगे। फिलहाल, आइए अपने डेटा को फिर से संसाधित करें और बॉब और एलिस के लिए एक मॉडल को इनिशियलाइज़ करें।
In [ ]:
remote_dataset = (list(),list())
train_distributed_dataset = []
for batch_idx, (data,target) in enumerate(train_loader):
data = data.send(compute_nodes[batch_idx % len(compute_nodes)])
target = target.send(compute_nodes[batch_idx % len(compute_nodes)])
remote_dataset[batch_idx % len(compute_nodes)].append((data, target))
def update(data, target, model, optimizer):
model.send(data.location)
optimizer.zero_grad()
pred = model(data)
loss = F.mse_loss(pred.view(-1), target)
loss.backward()
optimizer.step()
return model
bobs_model = Net()
alices_model = Net()
bobs_optimizer = optim.SGD(bobs_model.parameters(), lr=args.lr)
alices_optimizer = optim.SGD(alices_model.parameters(), lr=args.lr)
models = [bobs_model, alices_model]
params = [list(bobs_model.parameters()), list(alices_model.parameters())]
optimizers = [bobs_optimizer, alices_optimizer]
In [ ]:
# this is selecting which batch to train on
data_index = 0
# update remote models
# we could iterate this multiple times before proceeding, but we're only iterating once per worker here
for remote_index in range(len(compute_nodes)):
data, target = remote_dataset[remote_index][data_index]
models[remote_index] = update(data, target, models[remote_index], optimizers[remote_index])
In [ ]:
# create a list where we'll deposit our encrypted model average
new_params = list()
In [ ]:
# iterate through each parameter
for param_i in range(len(params[0])):
# for each worker
spdz_params = list()
for remote_index in range(len(compute_nodes)):
# select the identical parameter from each worker and copy it
copy_of_parameter = params[remote_index][param_i].copy()
# since SMPC can only work with integers (not floats), we need
# to use Integers to store decimal information. In other words,
# we need to use "Fixed Precision" encoding.
fixed_precision_param = copy_of_parameter.fix_precision()
# now we encrypt it on the remote machine. Note that
# fixed_precision_param is ALREADY a pointer. Thus, when
# we call share, it actually encrypts the data that the
# data is pointing TO. This returns a POINTER to the
# MPC secret shared object, which we need to fetch.
encrypted_param = fixed_precision_param.share(bob, alice, crypto_provider=james)
# now we fetch the pointer to the MPC shared value
param = encrypted_param.get()
# save the parameter so we can average it with the same parameter
# from the other workers
spdz_params.append(param)
# average params from multiple workers, fetch them to the local machine
# decrypt and decode (from fixed precision) back into a floating point number
new_param = (spdz_params[0] + spdz_params[1]).get().float_precision()/2
# save the new averaged parameter
new_params.append(new_param)
In [ ]:
with torch.no_grad():
for model in params:
for param in model:
param *= 0
for model in models:
model.get()
for remote_index in range(len(compute_nodes)):
for param_index in range(len(params[remote_index])):
params[remote_index][param_index].set_(new_params[param_index])
In [ ]:
def train(epoch):
for data_index in range(len(remote_dataset[0])-1):
# update remote models
for remote_index in range(len(compute_nodes)):
data, target = remote_dataset[remote_index][data_index]
models[remote_index] = update(data, target, models[remote_index], optimizers[remote_index])
# encrypted aggregation
new_params = list()
for param_i in range(len(params[0])):
spdz_params = list()
for remote_index in range(len(compute_nodes)):
spdz_params.append(params[remote_index][param_i].copy().fix_precision().share(bob, alice, crypto_provider=james).get())
new_param = (spdz_params[0] + spdz_params[1]).get().float_precision()/2
new_params.append(new_param)
# cleanup
with torch.no_grad():
for model in params:
for param in model:
param *= 0
for model in models:
model.get()
for remote_index in range(len(compute_nodes)):
for param_index in range(len(params[remote_index])):
params[remote_index][param_index].set_(new_params[param_index])
In [ ]:
def test():
models[0].eval()
test_loss = 0
for data, target in test_loader:
output = models[0](data)
test_loss += F.mse_loss(output.view(-1), target, reduction='sum').item() # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
test_loss /= len(test_loader.dataset)
print('Test set: Average loss: {:.4f}\n'.format(test_loss))
In [ ]:
t = time.time()
for epoch in range(args.epochs):
print(f"Epoch {epoch + 1}")
train(epoch)
test()
total_time = time.time() - t
print('Total', round(total_time, 2), 's')
इस नोटबुक ट्यूटोरियल को पूरा करने पर बधाई! यदि आपने इसका आनंद लिया है और एआई और एअर सप्लाई चेन (डेटा) के विकेन्द्रीकृत स्वामित्व के संरक्षण की ओर आंदोलन में शामिल होना चाहते हैं, तो आप निम्न तरीकों से ऐसा कर सकते हैं!
हमारे समुदाय की मदद करने का सबसे आसान तरीका सिर्फ रिपोज अभिनीत है! यह हमारे द्वारा बनाए जा रहे कूल टूल्स के बारे में जागरूकता बढ़ाने में मदद करता है।
नवीनतम प्रगति पर अद्यतित रहने का सबसे अच्छा तरीका हमारे समुदाय में शामिल होना है! http://slack.openmined.org पर फॉर्म भरकर आप ऐसा कर सकते हैं
हमारे समुदाय में योगदान करने का सबसे अच्छा तरीका एक कोड योगदानकर्ता बनना है! किसी भी समय आप PySyft Github जारी करने वाले पृष्ठ पर जा सकते हैं और "Projects" के लिए फ़िल्टर कर सकते हैं। यह आपको सभी शीर्ष स्तर के टिकट दिखाएगा कि आप किन परियोजनाओं में शामिल हो सकते हैं! यदि आप किसी प्रोजेक्ट से जुड़ना नहीं चाहते हैं, लेकिन आप थोड़ी सी कोडिंग करना चाहते हैं, तो आप "good first issue" चिह्नित गिथब मुद्दों की खोज करके अधिक मिनी-प्रोजेक्ट्स की तलाश कर सकते हैं।
यदि आपके पास हमारे कोडबेस में योगदान करने का समय नहीं है, लेकिन फिर भी समर्थन उधार देना चाहते हैं, तो आप हमारे ओपन कलेक्टिव में भी एक बैकर बन सकते हैं। सभी दान हमारी वेब होस्टिंग और अन्य सामुदायिक खर्च जैसे कि हैकाथॉन और मीटअप की ओर जाते हैं!
In [ ]: